FUZZY SET OPERATIONS :
1. FUZZY UNION :-
A = {( x , 0.5) , (y , 0.7) , (z ,0)}
B={( x , 0.8) , (y , 0.2) , (z ,1)}A U B = A UNION B
= maximum of membership
degree among the sets
A U B = ( x , 0.8) , (y , 0.7) , (z ,1)}
NOTICE -
0.8 > 0.5
0.7 > 0.2
1 > 0
2. FUZZY INTERSECTION :-
A = {( x , 0.5) , (y , 0.7) , (z ,0)} B={( x , 0.8) , (y , 0.2) , (z ,1)}
A INTERSECTION B = minimum of
membership degree among the sets
= ( x , 0.5) , (y , 0.2) , (z ,0)}
NOTICE -
0.8 < 0.5
0.7 < 0.2
1 < 0
3. A ' = COMPLEMENT OF A
A = {( x , 0.5) , (y , 0.7) , (z ,0)} B={( x , 0.8) , (y , 0.2) , (z ,1)}
A ' = 1 - MEMBERSHIP DEGREE
A ' = {(x , 0.5), (y ,0.3) , (z,1)}
B ' ={(x , 0.2) , (y,0.8) , (z,0)}
4. A - B = ?
A = {( x , 0.5) , (y , 0.7) , (z ,0)}
B={( x , 0.8) , (y , 0.2) , (z ,1)}
A - B = A INTERSECTION B'
= minimum of membership
degree among the sets
A- B = {(x , 0.2) , (y , 0.7) , (z ,0)}
5. POWER OF FUZZY SET = ?
IF "A " IS A FUZZY SET THEN
POWER SET (A) = (membership
degree of set )^ $
P(A) = (M. DEGREE)^$
NOTE -
IF $ = 1/2 THEN IT IS CALLED
"DILATION"
IF $ = 2 THEN IT IS CALLED
"CONCENTRATION "
EXAMPLE -
A = {( x , 0.5) , (y , 0.7) , (z ,0)}
$ = 2
A = {( x , 0.25) , (y , 0.49) , (z ,0)}
superbly written..
ReplyDeleteeasily understandable.....
user friendly
Thanxx Achal .....kudoss to u too
Delete:-)